Polymath: A Platform for Rapid Application
Development of Modular EDA Tools

Taimur Rabuske
INESC-ID, Lisboa, Portugal - Email: taimur.rabuske @ieee.org

Abstract—It is imperative that new solutions in Electronic
Design Automation (EDA) appear to cope with the increasing
complexity of modern chips. However, the lack of broadly
available platforms for rapid application development (RAD) of
EDA tools hinders the volume and quality of the contributions
from the scientific community. In this paper, we tackle this
issue by proposing a RAD platform for EDA tools that enables
the contributors to focus on the problem that they want to
solve instead of “reinventing the wheel”. The proposed platform
encompasses a user-friendly Tcl shell, a standardized data model,
templates for quick creation of commands, a system-level Qt
Graphical User Interface (GUI) and a user customizable Tk GUI,
all synchronized by an event loop orchestrator with distributed
processing capabilities. The amount of ‘boilerplate” code is
reduced to a minimum in each stage of development. Finally,
we propose the usage of a Continuous Integration/Continuous
Deployment cycle to reduce the efforts on distribution of the tools
developed on top of the platform. The platform was validated
with the development of modules for the design flow of mixed-
signal circuits.

Index Terms—RAD, rapid application development, EDA,
eletronic design automation, CAD, computer-aided design

1. INTRODUCTION

A variety of Electronic Design Automation (EDA) tools has
been devised in the past decades to cope with the increasing
design complexity of electronic circuits. These tools are used
to resolve diverse problems in different domains of electronic
design, such as system-level, integrated and board design. The
EDA industry, being an integral part of the semiconductor
industry, was an essential player and enabler of a succession of
technological revolutions, including the “Internet Revolution”
in the 90s and, more recently, the unprecedented growth of
the mobile communication. The EDA industry still undergoes
consistent growth, with more than 6 billions USD in revenue in
2018, pushed today by the booming automotive and artificial
intelligence sectors [1]. It is expected that the market will value
more than 9 billion USD by 2024, following the broader adop-
tion of Internet-of-Things (IoT) solutions. In fact, it is believed
that reaching the IoT Tera-scale (trillions of devices deployed
worldwide) will be possible only because the EDA industry
will provide solutions that act as “workforce multipliers”, to
confront the limitations in specialized human resources needed
to meet this burdensome goal [2].

Let us take a look into the anatomy of a modern EDA
tool, which at its core has the functionality to solve a specific
problem in the design of electronics, such as logic or physical
synthesis, simulation, verification, analog design, signoff or
others. This functionality is accessed generally by a Graphical
User Interface (GUI), while most solutions also expose their
core functions through an Application Programming Interface

978-1-7281-3320-1/20/$31.00 ©2020 IEEE

(API) or a scripting language, enabling the users to reuse
or even reprogram its procedures to meet their needs more
efficiently. An API may be accessible by an external pro-
gramming language, while a scripting language is generally
embedded within the application itself. In the latter case, most
applications employ Tcl (Tool Command Language), which
has its roots in the early 80s, and was initially purposed
exactly for integrated circuit (IC) design [3], while some
developers opt for a proprietary language, such as the LISP-
like SKILL [4]. The presence of an embedded language means
that some sort of read-eval-print loop (REPL), or “shell”
must be available to the user. Finally, a problem-dependent
data model exists within the applications, where the data
that is relevant to the problem to be solved is stored and
managed. It is very common for layout-related applications to
employ the OpenAccess [5] database, which is the outcome of
community effort to provide standardized data structures for
interoperability between tools from different vendors. Other
applications may use different data types such as netlists,
hardware description language (HDL) or custom tree data
structures.

While the implementations vary broadly, these key elements
(core functionality, GUI, shell, data model) are found in most
academic and commercial EDA tools. Though conceptually
simple, a significant effort is required to build up the minimal
platform that comprises these fundamental aspects that enable
a competitive modern EDA tool. The lack of a widely-available
standard platform for rapid development of EDA tools poses
a heavy burden on developers that want to unravel aspects of
electronics design: they are unable to focus entirely on the
problem that they are willing to solve, and need to “reinvent
the wheel” if they want their solution to be widely available to
other users. Alternatively, they may end up with a sub-optimal
solution in terms of user-experience, hindering the adoption of
the proposed solution. From a corporate perspective, the same
lack of a common platform may increase the time-to-market,
which in turn has impact on sales and early-adoption.

In this paper, we present ‘“Polymath”, a rapid application
development (RAD) platform devised for modern EDA tools.
The proposed solution is modular, in order to be easily
extensible and allows for easy integration of source code in
multiple programming languages, e.g. C/C++, Python, Tcl.
The presented platform minimizes the amount of “boilerplate”
code that is required to provide a satisfactory solution in terms
of user-experience, and provides the mentioned main aspects
of a competitive EDA solution and the gluing logic that allows
these bits to work together. In the next section, we present
the design philosophy of the platform, while describing its

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on October 22,2020 at 15:25:59 UTC from IEEE Xplore. Restrictions apply.

Modules Continuous
rt Integration/
C GUI Datamodel » Continuous
ore I I Deployment
e [+==| Commands) h I
funcionally I Ribbons ‘ I Docks ‘ | Session node LU | Data class LU —
\\ > 'i "\ Docker
| | 1 container
Main Application \ | |
Logging System Az Xy ¥ Tests
Tel Tk ataul Hierarchical tree
L Commands| ||| shel || user Gut || data structure |[Data class
0gs)
history l
7y User interface Datamodel
(‘f” » Build
Commands Shell Tel/Tk Qt ﬁ l
Execution event loop event loop event loop Y
Event Loops Orchestrator package YUM/_DNF
[H | “repository

Fig. 1. Overview of the Polymath RAD platform for EDA tools.

main features and implementation details. Next, in Section III,
we propose a Continuous Integration/Deployment cycle that
allows fast and reliable deployment of applications built upon
Polymath. Finally, Section IV discusses and concludes this
work.

II. RAD pLATFORM FOR EDA TOOLS

An overview of the Polymath RAD platform is shown in
Fig. 1. The system comprises a main application which, by
itself, does not provide any EDA functionality. The main
application allows modules to be registered at runtime, which
provide all the “core” functionality to undertake a given EDA
problem, which are exposed through commands that can be
called in the shell or by the GUL. The modules also provide
GUI elements (a “ribbon” menu and dock-able widgets) and
data structures to be registered in the application data model.
These components and the main features of Polymath are
described below.

A. Design Philosophy
Similar to other EDA tools, all functionality in Polymath

2> @option("--frequency",

comes in the form of “commands”. Enforcing this philosophy 7

has a few beneficial outcomes. First, these commands are
registered into the Tcl shell, and become callable functions
within the application. Thus, any procedure devised by the user
through a sequence of commands can be turned into a “script”,
enabling a higher degree of automation and repeatability.
Second, it becomes easier to integrate multiple programming
languages into the environment, because a command can be
thought of as a “wrapper” for a function (Polymath accepts
C/C++, Python and Tcl out-of-the-box but other languages
can be easily integrated through SWIG [6] wrappers). Finally,
when all functionality comes in the form of commands, it
becomes easier to write automated tests for the application.
This philosophy implies that most of the user interaction
through the GUI should be converted into command calls
before executed. From the perspective of repeatability, this is
also beneficial because the steps achieved through the GUI

may be converted into a script, i.e. it is more efficient to
“source” a Tcl script than to achieve the same functionality
through point-and-click interactions.

B. Tcl Shell and Commands Creation

The Tcl commands registered by the modules may be used
in control loops (e.g. if, for and while) and all other Tcl
language constructs and are accessible by a REPL interface
which provides syntax highlight and context-sensitive auto-
completion, as depicted in Fig. 2. The registration of new
commands is simple and the platform provides shortcuts
for self-documentation and command-line options/arguments.
Consider the following Python code excerpt that registers a
dummy command “plot-data”, which simply plots a sinusoidal
wave with a given frequency and amplitude (options) and name
(argument) into a widget.

@command ()

default=100e3,
help="Frequency of the sinusoid to be plotted.")

@option("--amplitude"”, default=60.95,
help="Amplitude of the generated sinusoid.")

@argument ("name", type=str)

def plot_data(frequency, amplitude, name):
"""Plots dummy data."""
y = amplitude * sin(frequency * 2 * pi * x)

info(f"Plotting sine {name} with {frequency} Hz.")

set_plotdata((x, y, 1))
Each registered command has an automatically-generated “-h”
option which shows its documentation. Fig. 3 displays the
results of “plot-data -h” and the auto-completion for this com-
mand. Also, the application maintains a commands history
and a log files, “polymath.cmd” and “polymath.log”, respec-
tively, where the user may revisit the previously executed
commands and their corresponding results and logging level
(debug, info, warning and error).

C. Graphical User Interface

The GUI of a Polymath-driven application consists of two
parts: a Qt-based [7] system GUI and a Tk-based [8] user
GUIL. The Qt GUI is populated by the modules through

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on October 22,2020 at 15:25:59 UTC from IEEE Xplore. Restrictions apply.

[pul,tmdth]& o
session Commands related to the session.

set Tcl: reads and writes variables.

si Deals with SI-suffixed notation, e.g. 1le6é -> 1M.

Tcl: Evaluates a file or resource as a Tcl script.

Prints the content of a node in the virtual filesystem.
Changes to a different node in the virtual filesystem.
List nodes in the virtual filesystem.

cpu:1.3% mem: session:216.9MB free:41.6%

Auto-completion of commands.

ved

(a)

polymath]$ cirl parameter paraml create

- ep Step size.

- Step size.

--minimum Minimum acceptable
-m Minimum acceptable
--maximum Maximum acceptable
-M Maximum acceptable

value for this
value for this
value for this
value for this

parameter.
parameter.
parameter.
parameter.

cpu:2.4% mem: session:248.5MB free:40.6%

(b) Auto-completion of options from a command.

Fig. 2. Tecl shell showing syntax highlighting and context-sensitive auto-
completion.

olymath]$ h
e: plot-data [OPTIONS] NAME

dummy data.

--frequency FLOAT
--amplitude FLOAT
= --help
[polymath]s$
frequency Frequency of the sinusoid to be plotted.
--amplitude Amplitude of the generated sinusoid.

Fig. 3. Tecl shell showing auto-generated commands documentation.

ribbons and dock-able widgets, as shown in Fig. 4. While,

the main application provides only a few basic ribbons and "

docks for navigating the tree data model and the help system,

13
14

16

showing/hiding docks and saving/loading the session state
and GUI configuration, the actual EDA GUI functionality is

provided by the modules.

The Tk-based GUI can be used by the user to extend
the functionality of the application via custom windows at
runtime. The Tk widgets, such as a push button or a text
input box, can be linked to any Tcl commands, including
commands registered by any Polymath module, facilitating
the user experience. Take the following example excerpt of
a Tcl code that extends the functionality of a Polymath-driven
module for the sizing of analog circuits.

Ribbons Docks

Polymath - o x

File | Window = Plot

New... Save.. Load...

Data Browser

i Wm Il ’* il [\J

N \.WH w M “ \H

Value ~
x |false
y 38
1192b 7352dB 7361dB 96.44dB -90.44dB -99.89dB -1015dB -97.92 dB
ENOB SNDR SNR SFDR THD 2nd H 3rdH 5thH
Fig. 4. Qt-based GUI showing ribbons and docks.

Biasing - o x
Reload window. | Compute
params |ids gm rout
devices M1 M2 M3
solution|sol0
L W type vgs vds vsb ids gm rout iratio
81.73u (314.857u | 167.034

M1 100n 20u |nch |835.095m | 13.246m 0 741.995m

110.149u (310.251u | 118.976

40.865u |651.251u (509.205K
158.091u | 2.023m | 8.994K i

-40.865u |538.241u | 1.709M
-194.494u | 1.561m | 11.193K

M2 100n 40u |nch |536.754m | 415.74m |13.246m

M3 100n 20u |pch |-671.014m -671.014m 0 210.109m

Fig. 5. Example of Tk-based custom user GUI

Title o window
wm title .b "Biasing"
#Create buttons

frame .b.buttons
grid [button .b.buttons.reload -text "Reload window."
-command "source table.tcl"] -column O -row 0

grid [button .b.buttons.compute -text "Compute" -command {

compute $devices $biases $params $solution}] -column 1
-row O

Define a procedure to compute devices parameters

proc compute {devices biases params solution} { ... }

Create a table

frame .b.table; set _c 1; set _r 1

foreach par "L W type $biases $params iratio" {
grid [label .b.table.par$par -text "$par"] -column ${_c}
-row 0; incr _c }
foreach dev $devices {
Labels of the table
grid [label .b.table.dev$dev -text $dev]
-column O

-row ${_r}

Populate table values
foreach par "$biases $params iratio" { ... } }

The custom GUI shows a window with a few text widgets
for input data that specifies biasing conditions of a number of
transistors, which are then displayed in a table. Some code is
hidden for space limitations. The resulting window is shown
in Fig. 5.

D. Data model

Our framework provides a set of data classes for nodes and
parameters to be used in a tree data structure. The registered
instances of these data classes are displayed automatically and
can be navigated in the “Data Browser” dock in Fig. 4. The
“dummy” node shown in that figure is an instance of the
following “Dummy” class, which inherits from the “Node”
class, while “x” and “y” are data-fields of types Boolean and
float, all provided by Polymath.

from polymath.datamodel import Node, BoolParameter,
FloatParameter
class Dummy (Node):
x = BoolParameter ()
y = FloatParameter ()
def __init__(self, name,
super().__init__(name,
self.x = False
self.y = 3.8
def resource(self):
return ":/icons/verif.png"

parent = None):

parent)

These templates of data structures accelerate the development
of the application data model, since they provide most of
the basic functionality required to integrate with the GUI
and the Tcl shell. The Data Browser dock in the GUI can
read and edit these parameters easily, while the type of data
is automatically validated (Polymath provides templates for

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on October 22,2020 at 15:25:59 UTC from IEEE Xplore. Restrictions apply.

[polymath]$
session:

X

use_ram True
remote_hosts: []
local_processors: 1
session_path: /de
[polymathl$

shm/polymath
dummy/x 1.5

[polymathls$
[polymath]$
[True

dummy/x true
dummy /x

Fig. 6. Example of “virtual file system” commands to access the Polymath
data structure.

string, Boolean, integer, float, lists and dictionaries, but custom
data types can be quickly created). Also, the Tcl shell provides
some commands that access this tree data structure as a
“virtual file-system”, with commands to list, set, print, etc,
as exemplified in Fig. 6. Finally, the platform provides the
functionality for any node in the tree to be exported to an
XML file, which allows previously saved nodes to be loaded
into the session without the need to code a specific serializer.
Also, since all the nodes are children or sub-children of the
parent “session” node (see the result of “vtree” in Fig. 6), the
whole session is saved and reloaded easily with all the data
that it stores. The adoption of the described data model does
not impossibilitate an external data model, e.g. OpenAccess,
to be adopted concurrently or to be wrapped around it. In
most cases, it may be a better design choice to isolate large
databases from the mentioned data model because the latter is
inherently linked to the GUI, which may consume significant
resources if the number of nodes is too large.

E. Event loops and distributed queue

One issue of integrating the Tcl shell, Tcl/Tk interpreter,
Qt GUI with the core functionality executed when running
the registered commands, is that many event loops (EL) need
to operate together. For this reason, we propose the usage of
an EL orchestrator. The EL orchestrator has its own EL that
schedules and synchronizes the other ELs in a non-blocking
fashion, i.e. the GUI is responsive when a command called
from the shell is running. Simultaneously, the EL orchestrator
also provides a distributed queue, which allows Tcl commands
to run in multiple processors or threads within the same
machine or in different machines through secure shell (SSH)
connections. An example of usage of the distributed queue is
shown in Fig. 7, where the queue is populated twice with
4 tasks that simply show in which process it is running,
and runs with 1 and 4 local processors, respectively. This
provides a very flexible approach for distributing workload
on different processors or machines, while still using the
commands created within the platform.

III. ContiNuous INTEGRATION/DEPLOYMENT

So far in this paper we covered the aspects of developing
EDA applications within the Polymath platform. However,
an important feature of the framework is its capability of
performing continuous integration and deployment (CI/CD).
When creating new commands for the EDA applications, it is
expected that the developer also creates automated tests which

[polymathl$
Using 1 pr
[polymath]$ foreach i {1 2
1

schedule {puts

[polymathl$
Running 4

d schedule {puts

[polymath]$
Running 4

Fig. 7. Example of distributed queue usage.

verify the correct behavior of such commands. Therefore, on
each commit/push to the development branch of the version
control system, e.g. Git, the automated tests run and the
developer is notified if any of them fails. If all the tests
pass, then the developer has the option to push the changes
to the master branch. The tests are again run for the master
branch and, if all of them pass once again, then the CI/CD
system starts building the executables for distribution. To
allow distribution to multiple platforms, the build cycle takes
place inside Docker containers and finally the package can
be released into a repository, allowing the users to update to
the latest version. For all of our tests, we deploy to different
versions of the same operating system which uses RPM as its
package manager. The flow is exemplified in Fig. 1.

IV. DiscussioN AND CONCLUSIONS

In this paper we presented Polymath, a RAD platform for
EDA tools. The framework solves many problems which are
recurrent when developing an EDA tool for wide adoption.
Polymath is able to reduce the efforts in development by
minimizing the amount of code required to link the core
functionality of the tool to the user interface (command line
and GUI). Also, a standardized data model is proposed in
which the data is readily available to the user on the shell
and GUI. The many aspects of the tool work concurrently
through an event loop orchestrator that simultaneously provide
a distributed queue for running tasks in multiple processors or
machines through SSH. Finally, the integration and deploy-
ment of tools built on top Polymath is simplified by the usage
of a CI/CD flow that automatically updates packages on a
repository, speeding the process of fixing bugs and releasing
new features. The platform has been successfully employed
on the creation of a number of different modules for different
EDA tasks, including design, characterization and verification
of mixed-signal circuits.

ACKNOWLEDGMENTS

The author would like to thank Carolina Metzler for
the fruitful discussions. This work was supported by na-
tional funds through FCT, Fundagdo para a Ciéncia e a
Tecnologia, under projects UIDB/50021/2020 PTDC/EEI-
EEE/31416/2017, and SFRH/BPD/116007/2016; and EU
project Ecsel-783132-Position-II-TA.

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on October 22,2020 at 15:25:59 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[11 Electronic Design Automation Tools (EDA) Market - Growth, Trends,
and Forecast (2019 - 2024), Accessed: 2019-10-28. [Online]. Available:
https : // www . researchandmarkets . com / reports / 4534513 / electronic -
design-automation-tools-eda-market.

[2]1 Thomas Lee presents at The Internet of Everything: a Stanford Engi-
neering symposium, Accessed: 2019-10-28. [Online]. Available: https:
//youtu.be/1Cq917THciw.

[3] History of Tcl, Accessed: 2019-10-31. [Online]. Available: https://web.
stanford.edu/~ouster/cgi-bin/tcIHistory.php.

[4] G. Wood and H.-F. S. Law, “SKILL - an interactive procedural design
environment,” in Custom Integrated Circuits Conference, May 1986,
pp. 544-547.

[S] Si2 OpenAcess, Accessed: 2019-10-31. [Online]. Available: http://
projects.si2.org/?page=69.

[6] D. M. Beazley, “SWIG: An easy to use tool for integrating scripting
languages with C and C++,” in Conference on USENIX Tcl/Tk Work-
shop, Jul. 1996, pp. 15-15.

[71 Qt website, Accessed: 2019-11-1. [Online]. Available: http://www.qt.io.

[8] B. Welch, K. Jones, and J. Hobbs, Practical Programming in Tcl/Tk.
Prentice Hall PTR, 2003.

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on October 22,2020 at 15:25:59 UTC from IEEE Xplore. Restrictions apply.

