

Low-Power SAR ADC techniques and applications

Pieter Harpe Eindhoven University of Technology

2020 IEEE International Symposium on Circuits and Systems Virtual, October 10-21, 2020

Outline

- Introduction, trends & applications
- Low-speed vs high-speed SAR ADCs
- Techniques for power-efficient SAR ADCs
- Application examples
- Limitations and future trends
- Conclusion

SAR ADC introduction

- Efficient algorithm (binary search)
- Simple circuit design
- Scales well with technology, VDD, f_{sample}
- By default no calibration/trimming since there are no critical bias currents/RC constants/offsets

SAR ADC performance area

 SAR ADCs became of interest for power constrained applications: battery powered & wearable systems, IoT

SAR ADC performance area

- SAR-only ADCs for medium speed/resolution applications
- SAR performance frontier uses <u>SAR-based</u> ADCs

ADC trends: frequency vs SNDR

SAR-based ADCs cover almost every application
 Except highest resolutions

ADC trends: efficiency vs f_{sample}

SAR-based ADCs are highly efficient
 For any speed of operation

ADC trends: efficiency vs SNDR

• SAR-based ADCs are highly efficient Especially for <70dB SNDR, but gradually also for >70dB SNDR

Low-speed vs high-speed design

Low speed ADC

Optimize efficiency

- kT/C (noise)
- C (matching)
- $\alpha \cdot CV^2$ (energy)
- C_{parasitic} (energy)

DAC rout C Vout C C Vout C R parasitic C parasitic

High speed ADC Optimize BW & timing

- RC constants: r_{out},
 C, R_{parasitic}, C_{parasitic}
 (delay)
- Sampling switch timing (jitter/skew)

- Noise
- Energy

Delay

Low-speed vs high-speed design

High speed ADC Low speed ADC Parasitic C's: Parasitic R & C's: Layout $delay \rightarrow$ increase energy speed limit consumption Lower VDD 🙂 Higher intrinsic Technology Smaller devices speed 🙂 scaling More leakage 😕

Outline

- Introduction, trends & applications
- Low-speed vs high-speed SAR ADCs
- Techniques for power-efficient SAR ADCs
- Application examples
- Limitations and future trends
- Conclusion

Techniques for power-efficiency

- Power efficiency: SNDR vs energy consumption
 - Noise & linearity versus energy consumption
- What is the main bottleneck?

Noise improvement

- Fundamental trade-off energy – noise
- Example for SC-DAC:
 - − Energy \propto CV²
 - SNR \propto V² / (kT/C)
 - Efficiency (Energy/SNR) ∞ kT

- More efficient circuit or architecture
 - Amplification
 - Averaging
 - Filtering

Noise improvement – Amplification (1)

Pipelined SAR ADC

- Increased throughput rate
- Efficient amplifier required
 - May need offset/gain/linearity calibration

Noise improvement – Amplification (2)

SAR ADC with kT/C noise cancellation

J. Liu, et al., "A 13b 0.005mm² 40MS/s SAR ADC with kT/C Noise Cancellation," IEEE ISSCC 2020.

Noise improvement – Averaging (1)

Oversampling

Every 4x OSR (≈4x power) → +6dB SNR →
 Constant efficiency

Noise improvement – Averaging (2)

- # comparator decisions: N x 1
- Repeat same decision and take majority vote → averages comparator noise. E.g.: 11001 → 1
 - When | V_{in}' V_{dac} | large: 1 decision reliable enough 80% N x 1
 - When $|V_{in}' V_{dac}|$ small: vote on multiple decisions 20% N x 5

Comparator SNR +6dB with less than 2x power

 $1.8 \times N$

Noise improvement – Filtering (1)

- Noise-shaping SAR: Oversampling + noise-shaping
 - Residue voltage of SAR ADC (available @ DAC after conv.)
 - Integrate this (loop filter) and add to input signal

Result: noise-shaping

Typical values	NS-SAR	SDM	
$N_{quantizer}$	6 10b	1 4b	
OSR	4x 16x	16x >100x	
Filter order	1 st 2 nd	2 nd 4 th	

Noise improvement – Filtering (2)

- 1. After SAR conversion, sample V_{residue} on C_{res} capacitors
- 2. Flip position of C_{res} and C'_{res} capacitors
 - Voltage on C_{res} is averaged with voltage on $C_{int} \rightarrow$ Integration
 - C_{int} is in series with the DAC, so its value is added to the next sample

Linearity improvement

- Trade-off caused by DAC element mismatch
- Example for SC-DAC:
 - Mismatch $\sigma^2 \propto 1 / A \propto 1 / C$
 - +6dB linearity \rightarrow ½ x σ \rightarrow 4x A and 4x C, so 4x energy

- Linearity enhancement techniques
 - Improve matching of DAC elements
 - Calibration
 - Mismatch error shaping (MES)

Linearity improvement – Capacitor design (1)

Binary code

	LSB			MSB
Digital weight	1	2	4	8
Analog weight	1+ε ₁	2+ε ₂	4+ ₆	8+ε ₈

 Accurate matching: unit elements

- Many elements 8
- Requires small C_u with good σ

Capacitor values (kT/C limit @1V_{pp})

# bits N	2 ^N	$C_s = 2^N C_u$	C _u
6	64	0.2fF	3aF
8	256	3.3fF	13aF
10	1024	52fF	51aF
12	4096	0.8pF	0.2fF
14	16384	13pF	0.8fF
16	65536	0.2nF	3.2fF

Linearity improvement – Capacitor design (2)

Capacitor implementations

MIMCAP

Area inefficient

 C_{min} usually > 2fF

1 design parameter (A), which sets C and σ

Area efficient

 $C_{min} < 0.25fF$

More design parameters (length, width, spacing, # layers) Partial decoupling of A, C, and σ

Double space (d)

Double length (L)

 \rightarrow Same C, larger A, better σ

Linearity improvement – Capacitor design (3)

• Example: SAR ADCs in 65nm CMOS with $C_u = 250aF$

– 10b ADC:

P. Harpe, et al., "A 3nW Signal Acquisition IC Integrating an Amplifier with 2.1 NEF and a 1.5fJ/conversion-step ADC," IEEE ISSCC, 2015.

- 12b ADC:

P. Harpe, et al., "A 10b/12b 40 kS/s SAR ADC With Data-Driven Noise Reduction Achieving up to 10.1b ENOB at 2.2 fJ/Conversion-Step," IEEE JSSC, Vol. 48, No. 12, 2013.

Linearity improvement – Capacitor design (4)

Delta-length capacitors: smaller C_{u,eff}, compact,
 #elements is linear in N rather than 2^N

Linearity improvement – Capacitor design (5)

Design example: 10b SAR ADC in 65nm CMOS

Linearity improvement – Capacitor design (6)

- Design example: 10b SAR ADC in 65nm CMOS
 - $C_u = 125aF$, ADC size 36 x 36 μ m
 - Small area, low power, good matching

Note: [9],[14-16] can be found in the paper below

P. Harpe, "A Compact 10b SAR ADC with Unit-Length Capacitors and a Passive FIR Filter," IEEE JSSC, Vol. 54, No. 3, 2019.

Linearity improvement – Calibration

	LSB			MSB
Digital weight	1	2	4	8
Analog weight	1+ε ₁	2+ε ₂	4+ ε ₄	8+e ₈

- Aim: rather than minimizing ε 's a-priori, apply calibration afterwards to match analog and digital weights:
 - Step 1: acquire info about ϵ 's after production
 - Step 2: correct weights so analog matches digital
 - Analog correction: tune ε 's towards zero
 - Digital correction: tune digital weights towards ε 's
 - Digital correction usually consumes more (high-res ADDers)
 - Analog correction is usually efficient (trim capacitors)

Linearity improvement – Calibration (1)

- Example: 13b SAR ADC with background calibration:
 - Digital detection
 - Mismatch shows at major code transitions in INL/DNL
 - If code B occurs, the ADC switches to A-1
 - Extra comparison reveals sign of △
 - Capacitor can be tuned towards zero error

Analog correction

Linearity improvement – Calibration (2)

Implemented in 40nm CMOS. Power and area overhead is low

Code

8191

Linearity improvement – MES

Noise shaping – Mismatch Error Shaping

Normal SAR @ sampling phase

- DAC reset to mid-scale
- No memory from prev. sample

- DAC remains at previous code

- DAC reset to mid-scale
- previous code (and ε) subtracted

Outline

- Introduction, trends & applications
- Low-speed vs high-speed SAR ADCs
- Techniques for power-efficient SAR ADCs
- Application examples
- Limitations and future trends
- Conclusion

Power & Area-efficient sensors

- Power gated bridge & ADC
 - 2.18pJ/sensor reading
 - Power scaling vs speed
- Area-efficient ADC
 - $-36 \times 46 \mu m$ in 65nm CMOS

- Resistive bridge
- Bridge control
- Power gating
- Sample & hold
- Comparator
- Control logic
- DAC (Not shown)

Smart self-adaptive sensor SoC

- On-chip behavioral tree to self-configure sensing rate, resolution, and compression strategy
 - Produce requested useful information with minimal energy/data rate
- SAR-based sensor frontend:
 - Dynamic consumption (scales with sensing rate)
 - Nyquist operation, sample-to-sample reconfiguration possible

Digital ultrasound catheters

Power & area constrained

Array of ADCs

12b 40MS/s ADC in 40nm CMOS: $\frac{36 \times 108 \ \mu m}{10b \ ENOB}$, 73dB SFDR, 5fJ/conv.step

Delta-length capacitors

Outline

- Introduction, trends & applications
- Low-speed vs high-speed SAR ADCs
- Techniques for power-efficient SAR ADCs
- Application examples
- Limitations and future trends
- Conclusion

Limitations vs resolution

- SAR can reach high-resolution, but not (yet) best-overall
- Nyquist SAR ADCs
 - Area/Costs high for >16b
 - kT/C cancellation?
 - Calibration
- Noise-shaping SAR ADCs
 - Suitable, relatively new, still lots of progress
 - More aggressive filtering
 - Mismatch-error shaping
 - But is it still a SAR ADC or an SDM?

Expectation: fading between NS-SAR and SDM implementations

Limitations vs speed

- Time-interleaved SAR ADCs ≈100GS/s
 - Technology scaling still helps
 - Progress over the years is relatively slow
 - Jitter bottleneck

Expectation: optical/electrical integration

Limitations vs efficiency

- SAR ADC is close to constant-FOMS line
 - Note: not a limit, just a trend
- Potential at low-res (<50dB SNDR)
 - Technology scaling
 - Simplify circuitry
 - Analog circuits
- Potential at high-res (>80dB SNDR)
 - Noise-shaping SAR

Expectation: SAR-based ADCs remain leading in efficiency

Conclusion

- SAR ADCs
 - Simple basics
 - Still plenty of ideas and innovation
- Current research: mostly SAR-based ADCs
 - Covers extremely large application space
 - But: basic SAR still attractive for simplicity and efficiency at modest specs
- Future: more blending of architectures, signal types, system integration

Acknowledgements

- Parts of the presented work are funded by:
 - Netherlands Organisation for Scientific Research (NWO), project #16594

 Phoenix project – EU Horizon 2020 research and innovation programme, grant agreement #665347

POSITION-II project

Grant no.: Ecsel-783132-Position-II-2017-IA